Перевод целой части числа из десятичной системы счисления в другую систему счисления
Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.
3. Перевести число в восьмиричную систему счисления.Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421Проверка: = = = , результат совпал. Значит перевод выполнен правильно.Ответ: =
Рассмотрим перевод правильных десятичных дробей в различные системы счисления.
Двадцатеричная система счисления индейцев Майя
Эта система интересна тем, что развивалась самостоятельно, без влияния цивилизаций Европы и Азии. Ее использовали в качестве календаря и для астрономических наблюдений. Характерная особенность данной системы счисления – наличие нуля, который изображался в виде ракушки. Основание системы – число $20$, при этом наблюдаются признаки пятеричной системы. Первые $19$ чисел системы получали комбинированием точек (один) и черточек (пять).
Рисунок 7.
Число 20 изображалось из двух цифр, ноль и один наверху и называлось уиналу (рис.8).
Рисунок 8.
Записывали числа столбцами, при это низшие разряды располагали внизу, а высшие – наверху, в результате чего получалось своеобразное изображение этажерки с полками. Если число ноль появлялось без единицы наверху, то это обозначало, что единицы данного разряда отсутствуют. Пример получения числа в такой системе:
Рисунок 9.
Замечание 4
В двадцатеричной системе счета древних майя имелось исключение, проявлявшееся в случае прибавления к числу $359$ одной единицы первого порядка. Суть исключения заключалась в следующем: $360$ является начальным числом третьего порядка и его место уже не на второй, а на третьей полке.
Но при этом получается, что начальное число третьего порядка больше начального числа второго не в двадцать раз ($20cdot 20=400$, а не $360!$), а только в восемнадцать. Отсюда следует, что принцип двадцатеричности нарушен.
Это довольно сложная система счисления использовалась жрецами для астрономических наблюдений, другая система индейцев Майя была аддитивной, похожей на египетскую и применялась в повседневной жизни.
1.1 Десятичная
Так как цифры записаны в десятичной, перевод с десятичной в десятичную пропустим
1.1.1 Десятичная → Двоичная
Как мы знаем двоичная система счисления используется практически во всех современных компьютерах и многих других вычислительных устройствах. Система очень проста – у нас есть только 0 и 1.
Для преобразования числа с десятиной в двоичную форму нужно использовать деление по модулю 2 (т.е. целочисленное деление на 2) в результате чего мы всегда будем иметь в остатке либо 1, либо 0. При этом результат записываем справа налево. Пример все поставит на свои места:
Рисунок 1.1 – Перевод чисел из десятичной в двоичную систему
Рисунок 1.2 – Перевод чисел из десятичной в двоичную систему
Опишу деление числа 98. Мы делим 98 на 2, в результате имеем 49 и остаток 0. Далее продолжаем деление и делим 49 на 2, в результате имеем 24 с остатком 1. И таким же образом добираемся до 1-ки или 0-ка в делимом. Затем результат записываем справа налево.
1.1.2 Десятичная → Восьмеричная
Восьмеричная система – это целочисленная система счисления с основанием 8. Т.е. все числа в ней представлены диапазоном 0 – 7 и для перевода с десятичной системы нужно использовать деление по модулю 8.
Рисунок 1.3 – Перевод чисел из десятичной в восьмеричную систему
Деление аналогично 2-чной системе.
1.1.3 Десятичная → Шестнадцатеричная
Шестнадцатеричная система почти полностью вытеснила восьмеричную систему. У нее основание 16, но используются десятичные цифры от 0 до 9 + латинские буквы от A(число 10) до F(число 15). С ней вы сталкиваетесь каждый раз, когда проверяете настройки сетевого адаптера — это МАС-адрес. Так же, когда используется IPv6.
Рисунок 1.4 – Перевод чисел из десятичной в шестнадцатеричную систему
Перевод чисел в системах счислении, построенных на бинарном основании
Восьмеричная и шестнадцатеричные системы счисления построены на бинарном базисе. Основанием восьмеричной системы является число 8, то есть 2^3, а основание шестнадцатеричной системы 16 = 2^4. Перевод между этими системами и двоичной системой удобнее всего выполнять с помощью таблицы перевода систем счисления:
Рис. 3. Таблица соответствия чисел в 2-, 8- и 16-й системах счисления.
Каждое восьмеричное число представляется триадой (тремя элементами) двоичных знаков, каждое шестнадцатеричное – двоичной тетрадой (четыре элемента).
Например, 8 → 2: 134 ⇔ 001011100
16 → 2: 8F ⇔ 10001111
2 → 8: 110101 ⇔ 65
2 → 16: 11011000 ⇔ D8
Что мы узнали?
Переход между различными системами счисления выполняется по строго определенным правилам. Десятичные числа преобразуются в другие системы путем последовательного деления целой части и умножения дробной, обратный перевод выполняется с помощью полинома. Перевод между 2-, 8- и 16-ми системами выполняется по таблице.
Системы счисления
Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.
Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:
Число: | 5 | 9 | 2 | 1 |
Позиция: | 3 | 2 | 1 |
Число 5921 можно записать в следующем виде: = = . Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.
Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:
Число: | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Позиция: | 3 | 2 | 1 | -1 | -2 | -3 |
Число 1234.567 можно записать в следующем виде: = = .
Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения
Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:
число | 6 | 3 | 7 | 2 |
позиция | 3 | 2 | 1 |
Тогда число 6372 можно представить в следующем виде:
Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.
Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:
число | 1 | 2 | 8 | 7 | . | 9 | 2 | 3 |
позиция | 3 | 2 | 1 | -1 | -2 | -3 |
Тогда число 1287.923 можно представить в виде:
В общем случае формулу можно представить в следующем виде:
Цn·sn+Цn-1·sn-1+…+Ц1·s1+Ц·s+Д-1·s-1+Д-2·s-2+…+Д-k·s-k
где Цn-целое число в позиции n, Д-k– дробное число в позиции (-k), s – система счисления.
Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления – из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления – из множества цифр {0,1}, в шестнадцатеричной системе счисления – из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.
В таблице Таб.1 представлены числа в разных системах счисления.
Таблица 1 | |||
---|---|---|---|
Система счисления | |||
10 | 2 | 8 | 16 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения
Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:
число | 6 | 3 | 7 | 2 |
позиция | 3 | 2 | 1 |
Тогда число 6372 можно представить в следующем виде:
Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.
Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:
число | 1 | 2 | 8 | 7 | . | 9 | 2 | 3 |
позиция | 3 | 2 | 1 | -1 | -2 | -3 |
Тогда число 1287.923 можно представить в виде:
В общем случае формулу можно представить в следующем виде:
Цn·sn+Цn-1·sn-1+…+Ц1·s1+Ц·s+Д-1·s-1+Д-2·s-2+…+Д-k·s-k
где Цn-целое число в позиции n, Д-k— дробное число в позиции (-k), s — система счисления.
Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления — из множества цифр {0,1}, в шестнадцатеричной системе счисления — из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.
В таблице Таб.1 представлены числа в разных системах счисления.
Таблица 1 | |||
---|---|---|---|
Система счисления | |||
10 | 2 | 8 | 16 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Онлайн конвертер
ОсновныеДвоичная (2)Восьмеричная (8)Десятичная (10)Шестнадцатеричная (16)ДополнительныеТроичная (3)Четверичная (4)Пятиричная (5)Шестиричная (6)Семиричная (7)Девятиричная (9)Одиннадцатиричная (11)Двенадцатиричная (12)Тринадцатиричная (13)Четырнадцатиричная (14)Пятнадцатиричная (15)Двадцатеричная (20) ⇒ОсновныеДвоичная (2)Восьмеричная (8)Десятичная (10)Шестнадцатеричная (16)ДополнительныеТроичная (3)Четверичная (4)Пятиричная (5)Шестиричная (6)Семиричная (7)Девятиричная (9)Одиннадцатиричная (11)Двенадцатиричная (12)Тринадцатиричная (13)Четырнадцатиричная (14)Пятнадцатиричная (15)Двадцатеричная (20)
Просто введите целое число и выберете системы счисления.
Для примера переведём число 123 из десятеричной системы в другие:
- в двоичную: 12310 = 11110112
- в восьмеричную: 12310 = 1738
- в шестнадцатеричную: 12310 = 7B16
- в троичную: 12310 = 111203
- в четверичную: 12310 = 13234
- в пятиричную: 12310 = 4435
- в шестиричную: 12310 = 3236
- в семиричную: 12310 = 2347
- в девятиричную: 12310 = 1469
- в одиннадцатиричную: 12310 = 10211
- в двенадцатиричную: 12310 = A312
- в тринадцатиричную: 12310 = 9613
- в четырнадцатиричную: 12310 = 8B14
- в пятнадцатиричную: 12310 = 8315
- в двадцатеричную: 12310 = 6320
Кратко об основных системах счисления
Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.
Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.
Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.
Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. #FF0000 — красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15.
Какие бывают системы счисления
Наиболее часто используемыми системами счисления являются:
- двоичная (2) – все числа записываются лишь посредством двух символов: 0 и 1. Используется в дискретной математике, информатике и программировании.
- троичная (3) – числа записываются посредством трёх символов: 0, 1 и 2. Используется в цифровой электронике.
- восьмеричная (8) – числа записываются посредством цифр от 0 до 7. Используется в областях связных с цифровыми устройствами, так как восьмеричные числа легко переводятся в двоичные и обратно.
- десятеричная (10) – числа записываются посредством цифр от 0 до 9. Используется повсеместно.
- двенадцатеричная (12) – числа записываются посредством цифр от 0 до 9 и буквами A и B. Cчёт дюжинами…
- шестнадцатеричная (16) – числа записываются посредством цифр от 0 до 9 и буквами A, B, C, D, E, F. Широко используется в программировании и информатике.
- двадцатеричная (20) – числа записываются посредством цифр от 0 до 9 и буквами A, B, C, D, E, F, G, H, I (или J), J( или K). Исторически используется во многих языках, в частности в языке йоруба, у тлинкитов, в системе записи чисел майя, некоторых азиатских и кавказских языках.
Непозиционные СС, их особенности
Первоначально древние люди ставили отметки (черточки-зарубки, точки), чтобы обозначить количество того или иного предмета. Отклики этого подхода все еще встречаются (полоски у военных, счетные палочки).
Постепенно от единиц они переходили к группам предметов по 3, 5, 10 единиц. Постепенно такие группы стали обозначаться определенными символами, что позволило сократить размер записи.
Римская СС
В ней определенным цифрам отвечают латинские буквы. Их сумма и будет числом.
Основные рекомендации при пользовании римскими цифрами:
- Символы следует писать по убыванию слева направо.
- Нежелательно записывать подряд более 3 одинаковых знаков.
- Положение цифры обозначает, какой ее вклад – отрицательный, если она стоит слева от большего числа, положительный – справа.
Таблица римских цифр
Недостаток этой СС в том, что для больших чисел недоступны операции сложения или другие, ещё она сложная и громоздкая. Зато римские цифры отлично вписались там, где нужна нумерация и эстетика: циферблаты, номера глав, списки, серии документов.
Двоичная система счисления
Основанием системы счисления служит число 2 (s = 2) и для записи чисел используются только
две цифры: 0 и 1. Чтобы представить любой разряд двоичного числа, достаточно иметь физический элемент
с двумя чётко различными устойчивыми состояниями, одно из которых изображает 1, а другое 0.
Прежде чем заняться переводом из любой системы счисления в двоичную, нужно внимательно изучить пример записи числа в двоичной системе счисления:
Если Вам не нужно углубляться в теорию, а нужно лишь получить результат,
то воспользуйтесь Калькулятором онлайн Перевод целых чисел из десятичной системы счисления
в другие системы.
Древнекитайская десятеричная
Данная система счисления – самая прогрессивная из старейших, так как она построена на тех же принципах, что и современная «арабская», используемая в наше время. Возникла эта система около $4 000$ тысяч лет назад в Китае.
Рисунок 6.
Числа в ней записывались слева направо, от большего к меньшему. При отсутствии какого-либо разряда ничего не ставили и переходили к следующему, такой разряд во времена правления династии Мин стал обозначаться кружочком, аналогом нуля. Во избежание путаницы разрядов ввели несколько служебных иероглифов, которые записывались после основного и показывали, какое значение принимает иероглиф-цифра в данном разряде.
1.2 Двоичная
В предыдущем примере мы перевели все десятичные числа в другие системы счислений, одна из которых двоичная. Теперь переведем каждое число с двоичной формы.
1.2.1 Двоичная → Десятичная
Для перевода чисел с двоичной формы в десятичную нужно знать два нюанса. Первый – у каждого нолика и единички есть множитель 2 в n-й степени, при котором n увеличивается справа налево ровно на единичку. Второй – после перемножения все числа нужно сложить и мы получим число в десятичной форме. В итого у нас будет формула такого вида:
Где,D – это число в десятичной форме, которое мы ищем;n – количество символов в двоичном числе;a – число в двоичной форме на n-й позиции (т.е. первый символ, второй, и т.п.);p – коэффициент, равный 2,8 или 16 в степени n (в зависимости от системы счисления)
К примеру возьмем число 110102. Смотрим на формулу и записываем:
- Число состоит из 5 символов (n=5)
-
a5 = 1, a4 = 1, a3 = 0, a2 = 1, a1 = 0
- p = 2 (так как переводим из двоичной в десятичную)
В итоге имеем:
Кто привык записывать справа на лево, форму будет выглядеть так:
Но, как мы знаем, от перестановки слагаемых сумма не меняется. Давайте теперь переведем наши числа в десятичную форму.
Рисунок 1.5 – Перевод чисел из двоичной в десятичную систему
1.2.2 Двоичная → Восьмеричная
При переводе нам нужно двоичное число разбить на группы по три символа справа налево. Если последняя группа не состоит из трех символов, то мы просто возмещаем недостающие биты ноликами. К примеру:
10101001 = 10 101 001
1011100 = 001 011 100
Каждая группа битов – это одно из восьмеричных чисел. Чтобы узнать какое, нужно использовать написанную выше формулу 1.2.1 для каждой группы битов. В результате мы получим.
Рисунок 1.6 – Перевод чисел из двоичной в восьмеричную систему
1.2.3 Двоичная → Шестнадцатеричная
Здесь нам нужно двоичное число разбивать на группы по четыре символа справа налево с последующим дополнением недостающих битов группы ноликами, как писалось выше. Если последняя группа состоит из ноликов, то их нужно игнорировать.
110101011 = 0001 1010 1011
1011100 = 101 1100
001010000 = 000101 0000 = 0101 0000
Каждая группа битов – это одно из шестнадцатеричных чисел. Используем формулу 1.2.1 для каждой группы битов.
Рисунок 1.7 – Перевод чисел из двоичной в шестнадцатеричную систему
Перевод чисел из одной системы счисления в другую
Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:
1. Перевести число в десятичную систему счисления.Решение: = = = Ответ: =
2. Перевести число в десятичную систему счисления.Решение: = = = Ответ: =
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.
Перевод целой части числа из десятичной системы счисления в другую систему счисления
Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.
3. Перевести число в восьмиричную систему счисления.Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421Проверка: = = = , результат совпал. Значит перевод выполнен правильно.Ответ: =
Рассмотрим перевод правильных десятичных дробей в различные системы счисления.
Перевод дробной части числа из десятичной системы счисления в другую систему счисления
Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.
4. Перевести число в двоичную систему счисления.Решение: (0 — целая часть, которая станет первой цифрой результата), (0 — вторая цифра результата), (1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).Ответ: =
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.
Целую часть числа переводится из десятичной СС в другую систему счисления — последовательным делением целой части числа на основание системы счисления (для двоичной СС — на 2, для 8-ичной СС — на 8, для 16-ичной — на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.
Пример 4. Переведем число 159 из десятичной СС в двоичную СС:
159 | 2 | ||||||
158 | 79 | 2 | |||||
1 | 78 | 39 | 2 | ||||
1 | 38 | 19 | 2 | ||||
1 | 18 | 9 | 2 | ||||
1 | 8 | 4 | 2 | ||||
1 | 4 | 2 | 2 | ||||
2 | 1 |
Рис. 1
Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:
Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.
615 | 8 | ||
608 | 76 | 8 | |
7 | 72 | 9 | 8 |
4 | 8 | 1 | |
1 |
Рис. 2
При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:
Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.
19673 | 16 | ||
19664 | 1229 | 16 | |
9 | 1216 | 76 | 16 |
13 | 64 | 4 | |
12 |
Рис. 3
Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 — D. Следовательно наше шестнадцатеричное число — это 4CD9.
Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.
Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).
Рассмотрим вышеизложенное на примерах.
Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.
0.214 | ||
x | 2 | |
0.428 | ||
x | 2 | |
0.856 | ||
x | 2 | |
1 | 0.712 | |
x | 2 | |
1 | 0.424 | |
x | 2 | |
0.848 | ||
x | 2 | |
1 | 0.696 | |
x | 2 | |
1 | 0.392 |
Рис. 4
Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011.
Следовательно можно записать:
Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.
0.125 | ||
x | 2 | |
0.25 | ||
x | 2 | |
0.5 | ||
x | 2 | |
1 | 0.0 |
Рис. 5
Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:
Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.
0.214 | ||
x | 16 | |
3 | 0.424 | |
x | 16 | |
6 | 0.784 | |
x | 16 | |
12 | 0.544 | |
x | 16 | |
8 | 0.704 | |
x | 16 | |
11 | 0.264 | |
x | 16 | |
4 | 0.224 |
Рис. 6
Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:
Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.
0.512 | ||
x | 8 | |
4 | 0.096 | |
x | 8 | |
0.768 | ||
x | 8 | |
6 | 0.144 | |
x | 8 | |
1 | 0.152 | |
x | 8 | |
1 | 0.216 | |
x | 8 | |
1 | 0.728 |
Рис. 7
Получили:
Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:
Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим: