Большое тестирование процессоров различных архитектур

AMD vs Intel. Небольшое историческое введение

Итак, поехали. Компании Intel Corporation и Advanced Micro Devices были основаны примерно в одно время: в 1968 и 1969 годах соответственно. То есть за спиной у обеих компаний огромный опыт как производства процессоров, так и конкуренции между собой. Но почему-то в среде простых «юзеров» Intel гораздо известнее. И даже в некоторых допотопных технических учебных заведениях подробно изучают старенький и наболевший всем технарям-студентам процессор i8080. АМД в это время просто выпускали клоны 8080 в виде процессоров Am9080. А первым удачным процессором AMD собственной разработки можно назвать процессор Am2900.

Классификация архитектур

По скорости и количеству выполняемых команд архитектуры делятся на:

  • CISC. На английском языке расшифровывается как «Complex Instruction Set Computing», то есть «Комплексный набор команд». Устройствам этого типа свойственно большое количество режимов адресации и команд разного формата и длины, а также сложная кодировка инструкции.
  • RISC. Первое слово в расшифровке заменено на «Reduced», что на нашем языке — «Сокращенный». Это значит, что все команды имеют одинаковый формат и кодировку.
  • MISC (Multipurpose — Многоцелевой ). База элементов делится на две части, которые находятся или в одном корпусе, или в отдельных. Главной выступает RISC CPU. Он дополнен другой частью — постоянным запоминающим устройством микропрограммного управления. Системе присущи характеристики CISC. Большинство команд выполняет первая часть, а команды расширения преобразуются в адрес микропрограммы.

Также существует классификация процессоров, и соответственно архитектур, по назначению:

  • Графические. Как видеокарта отвечает за визуализацию объектов на экране.
  • Математические. Нацелены на расширение набора команд, выполняемых центральным процессором, для решения различных математических задач.
  • Цифровые сигнальные. Специализированные устройства, предназначенные для обработки оцифрованных сигналов.

С физической точки зрения девайсы разделяются по количеству ядер, которые отвечают за выполнение команд. Если их больше одного, устройства называются многоядерными.

Модели Athlon 64

Clawhammer (130 нм SOI)

  • Степпинг процессора: C0, CG
  • L1-кэш: 64 + 64 КБ (данные + инструкции)
  • L2-кэш: 1024 КБ, полная скорость
  • MMX , расширенное 3DNow! , SSE , SSE2 , AMD64 , Cool’n’Quiet , NX Bit (только CG )
  • Socket 754 , 800 МГц HyperTransport (HT800)
  • Socket 939 , 1000 МГц HyperTransport (HT1000)
  • VCore: 1,50 В
  • Потребляемая мощность ( TDP ): 89 Вт макс.
  • Первый выпуск: 23 сентября 2003 г.
  • Тактовая частота: 2000–2600 МГц

Ньюкасл (130 нм SOI)

Также возможно: ClawHammer-512 (Clawhammer с частично отключенным L2-кешем)

  • Степпинг процессора: CG
  • L1-кэш: 64 + 64 КБ (данные + инструкции)
  • L2-кэш: 512 КБ, полная скорость
  • MMX , расширенное 3DNow! , SSE , SSE2 , AMD64 , Cool’n’Quiet , NX Bit
  • Socket 754 , 800 МГц HyperTransport (HT800)
  • Socket 939 , 1000 МГц HyperTransport (HT1000)
  • VCore: 1,50 В
  • Потребляемая мощность ( TDP ): 89 Вт макс.
  • Первый выпуск: 2004 г.
  • Тактовая частота: 1800–2400 МГц

Винчестер (90 нм SOI)

  • Степпинг процессора: D0
  • L1-кэш: 64 + 64 КБ (данные + инструкции)
  • L2-кэш: 512 КБ, полная скорость
  • MMX , расширенное 3DNow! , SSE , SSE2 , AMD64 , Cool’n’Quiet , NX Bit
  • Socket 939 , 1000 МГц HyperTransport (HT1000)
  • VCore: 1,40 В
  • Потребляемая мощность ( TDP ): 67 Вт макс.
  • Первый выпуск: 2004 г.
  • Тактовая частота: 1800–2200 МГц

Венеция (90 нм SOI)

  • Степпинг процессора: E3, E6
  • L1-кэш: 64 + 64 КБ (данные + инструкции)
  • L2-кэш: 512 КБ, полная скорость
  • MMX , расширенное 3DNow! , SSE , SSE2 , SSE3 , AMD64 , Cool’n’Quiet , NX Bit
  • Socket 754 , 800 МГц HyperTransport (HT800)
  • Socket 939 , 1000 МГц HyperTransport (HT1000)
  • VCore: 1,35 В или 1,40 В
  • Потребляемая мощность ( TDP ): 89 Вт макс.
  • Первый выпуск: 4 апреля 2005 г.
  • Тактовая частота: 1800–2400 МГц

Сан-Диего (90 нм SOI)

  • Степпинг процессора: E4, E6
  • L1-кэш: 64 + 64 КБ (данные + инструкции)
  • L2-кэш: 1024 КБ, полная скорость
  • MMX , расширенное 3DNow! , SSE , SSE2 , SSE3 , AMD64 , Cool’n’Quiet , NX Bit
  • Socket 939 , 1000 МГц HyperTransport (HT1000)
  • VCore: 1,35 В или 1,40 В
  • Потребляемая мощность ( TDP ): 89 Вт макс.
  • Первый выпуск: 15 апреля 2005 г.
  • Тактовая частота: 2200–2600 МГц

Манчестер (90 нм SOI)

  • Степпинг процессора: F1
  • L1-кэш: 2 x 64 + 2 x 64 КБ (данные + инструкции)
  • L2-кэш: 2 x 512 КБ, полная скорость
  • MMX , расширенное 3DNow! , SSE , SSE2 , SSE3 , AMD64 , Cool’n’Quiet , NX Bit
  • Socket 939 , 1000 МГц HyperTransport (HT1000)
  • VCore: 1,35 В
  • Потребляемая мощность ( TDP ): 89 Вт макс.
  • Первый выпуск: 15 апреля 2005 г.
  • Тактовая частота: 2200–2600 МГц

Орлеан (90 нм SOI)

  • CPU-степпинг: F2, F3
  • L1-кэш: 64 + 64 КБ (данные + инструкции)
  • L2-кэш: 512 КБ, 1 МБ
  • MMX , расширенная версия 3DNow! , SSE , SSE2 , SSE3 , AMD64 , Cool’n’Quiet , NX Bit , AMD-V
  • Разъем AM2 , 1000 МГц HyperTransport (HT1000)
  • VCore: 1,25 В или 1,40 В
  • Потребляемая мощность ( TDP ): 62 Вт макс.
  • Первый выпуск: 23 мая 2006 г.
  • Тактовая частота: 1800–2600 МГц

Лима (65 нм SOI)

  • Степпинг процессора: G1
  • L1-кэш: 64 + 64 КБ (данные + инструкции)
  • L2-кэш: 512 КБ, полная скорость
  • MMX , расширенная версия 3DNow! , SSE , SSE2 , SSE3 , AMD64 , Cool’n’Quiet , NX Bit , AMD-V
  • Разъем AM2 , 1000 МГц HyperTransport (HT1000)
  • VCore: 1,25 / 1,35 / 1,40 В
  • Потребляемая мощность ( TDP ): 45 Вт макс.
  • Первый выпуск: 20 февраля 2007 г.
  • Тактовая частота: 2000–2800 МГц

Сравнение производительности процессоров AMD

Учитывая невысокую стоимость продуктов от АМД при достаточном уровне производительности, а также некоторые особенности архитектуры данных ЦП, они заняли свою нишу у людей, работающих с большим количеством математических вычислений. К ним относятся дизайнеры, учёные, и, как ни удивительно, геймеры – игроки в компьютерные игры.

Учитывая, то большинство ПК для популярных игр – это представители т.н. бюджетного сегмента, а продукция АМД подходит под понятие «бюджетный», как никакая другая, трудно было бы ожидать другого результата.

Именно поэтому большинство тестов АДМ приводится для «игровых» конфигураций ПК, то есть таких конфигураций, в которых используются высокопроизводительные видеокарты и большие объёмы памяти. Собственно, давно стало традицией помимо стандартных тестов любую продукцию АМД «прогонять» в тестах в виде игровых бенч Марков.

Процессоры AMD для настольных ПК

Рассмотрим результаты тестирования процессоров от АМД на конец 2018 года, в котором представлены наиболее актуальные модели, существующие на сегодняшний день в продаже. При этом, серверные или мобильные решения рассматриваться не будут.

Кроме того, рейтинг производительности представлен в процентах от максимальной производительности, показанной самым мощным ЦП от АДМ — AMD Ryzen Threadripper 2990WX (которая для рассматриваемых ЦП условно принята за 100%).

Таблица производительности процессоров для настольных ПК выглядит следующим образом:

Позиция Модель Производительность
1 Ryzen Threadripper 2950X Ryzen Threadripper 2950X
2 Ryzen Threadripper 1950 79.5
3 Ryzen Threadripper 1950X 79.4
4 Ryzen 7 2700X 62.2
5 Ryzen 7 PRO 2700X 61.1
6 Ryzen 7 1800X 55.4
7 Ryzen 7 PRO 1700 55.3
8 Ryzen 5 PRO 2600 52.7
9 Ryzen 5 2600 48.7
10 Ryzen 5 1600X 44.1

Как видно из таблицы, лидируют новые ЦП Threadripper, производительность предыдущих «топов» — Райзенов 7 составляет примерно 60% от топов нынешних, однако, даже пятые Райзены попали в эту таблицу, показав вполне приемлемые результаты.

Процессоры AMD для игровых ПК 2019

Лучшим выбором в 2019 году в качестве процессоров для игр от АМД будут линейки Ryzen 5 или Ryzen 7, имеющие разброс цен от 130-230 долларов до 235-400 долларов соответственно. При этом, они будут прямыми конкурентами любых ЦП от Интел от i3 до i7 включительно.

Рейтинг производительности игровых процессоров от АМД приведен в следующей таблице:

Позиция Модель Производительность
1 Ryzen 7 2700X 100
2 Ryzen 7 PRO 2700 99.1
3 Ryzen 7 1800X 90.5
4 Ryzen 7 PRO 1700Х 90.1
5 Ryzen 7 2700 87.0
6 Ryzen 5 PRO 2600 85.2
7 Ryzen 5 2600X 84.9
8 Ryzen 5 2600 79.2
9 Ryzen 5 1600X 75.4
10 Ryzen 5 PRO 1600 70.5

В таблице приведена производительность ЦП относительно модели Ryzen 7 2700X, показавшей наивысший результат.

Процессоры AMD ноутбуков

Новые процессоры АМД для ноутбуков распределились следующим образом:

Позиция Модель Производительность
1 Ryzen 7 PRO 2700U 100
2 Ryzen 5 PRO 2500U 98.2
3 Ryzen 7 2700U 81.2
4 Ryzen 5 2500U 80.3
5 Ryzen 3 PRO 2300U 78.1
6 A10-5750M 71.8
7 A8-5550M 70.9
8 Ryzen 3 2300U 65.5
9 A8-5557V 64.5
10 A10-4600V 63.8

Также, как и в предыдущем случае, В таблице приведена производительность ЦП относительно максимально быстрой модели ЦП среди ноутбуков, которым в данном сегменте оказался Ryzen 7 2700U, имеющий максимальные результаты.

Перенос приложений на AMD64

Одним из назначений языков высокого уровня является по возможности сократить привязку программного кода к архитектуре и обеспечить максимально возможную переносимость между аппаратными платформами. Например, правильно написанные программы на языке Си++ теоретически не зависят от аппаратной платформы. И для компиляции существующих 32-битный приложений под платформу AMD64 в идеале достаточно просто сменить компилятор [] и просто перекомпилировать программу. Но на практике дела обстоят более сложно.

До сих пор существует программное обеспечение, использующий ассемблерный код для 32-битных процессоров. Многие программы, написанные на языках высокого уровня, содержат ассемблерные вставки. Поэтому просто перекомпилировать большой проект часто бывает невозможно. Решение проблемы понятно. Во-первых, можно отказаться от переноса приложения на новую платформу. Это может быть весьма разумным решением, так как, например операционные системы семейства Windows обеспечивают хорошую обратную совместимость, благодаря технологии Wow64. Второй вариант — переписать программный код. Причем разумным выглядит его переписывание с использованием языков высокого уровня. Кстати заметим, что компилятор Visual C++ более не поддерживает компиляцию ассемблерных вставок в 64-битном режиме компиляции [].

Наличие ассемблерного программного кода не единственное препятствие при освоении 64-битных систем. При переносе программ на 64-битные системы возникают разнообразные ошибки, связанные с изменением модели данных (размерности типов). Причем ряд ошибок проявляет себя только при использовании большого объема памяти, который был не доступен на 32-битных системах. Подобные ошибки хорошо описаны в статье «20 ловушек переноса Си++ — кода на 64-битную платформу» [].

Сказанное выше относится больше к приложениям, разработанным на языке Си/Си++. С управляемым кодом (C#) дела обстоят лучше, хотя и здесь можно ожидать мелких неполадок. К сожалению, большие программные комплексы часто строятся с использованием библиотек, созданных на языках Си/Си++. И поэтому в случае крупного проекта, написанного на C#, скорее всего найдутся модули или библиотеки на языке Си/Си++, которые могут быть небезопасны и содержать уязвимости.

Для тестирования и проверки программного кода, переносимого на 64-битную платформу можно использовать различные специальные методики и инструменты []. Например, хорошие результаты дает использование статических анализаторов, таких как Viva64 (для Windows систем) и PC-Lint (для Unix систем). Более подробно с этим инструментарием можно познакомиться в статье «Сравнение диагностических возможностей анализаторов при проверке 64-битного кода» [].

4 АМД FX-6300

FX-6300 от АМД – это ЦП с поддержкой архитектуры Piledriver. Процессоры с такой архитектурой уже стали достойными конкурентами новинкам от Интела.

Все процессоры от АМД группы FX обладают прекрасным разгонным потенциалом.

Характеристики FX-6300:

  • Серия: FX-Series;
  • Поддерживаемый разъем: Socket AM3+;
  • Количество ядер: 6;
  • Нет интегрированной графики;
  • Есть разблокированный множитель;
  • Тактовая частота равно 3,5 МГц;
  • Число контактов: 938;
  • Стоимость модели в среднем составляет 85$.

Характерная особенность процессора состоит в его гибкости.

Заявленная разработчиком тактовая частота составляет 3,5 МГц, что является довольно посредственным показателем среди процессоров для персональных компьютеров.

Однако, в данном ЦП предусмотрена возможность разгона частоты до 4.1 МГц.

бокс устройств серии FX от АМД

Ускорение работы происходит во время интенсивных нагрузок. Чаще в процессе рендеринга видео или работы с играми.

Следует отметить, что в эта модель ЦП оснащена двухканальным контроллером памяти.

Тестирование быстродействия процессора было проведено в Just Cause 2.

Итоговые результаты показали, что Athlon X4 860K поддерживает максимальное разрешение графики на уровне в 1920 x 1200 точек.

В компьютере также использовалась интегрируемая видеокарта GTX 580.

На рисунке ниже вы можете увидеть сравнительный анализ быстродействия и других процессоров, которые были протестированы с идентичными условиями программной и аппаратной среды.

Мифы про AMD

Сразу хотелось бы развеять мифы о «горящих» и «не подлежащих» разгону процессорах AMD. На сегодняшний день такие заявления основаны на «голых» слухах. Около десяти лет назад было множество прецедентов выхода из строя процессоров типа Athlon 1400, которые просто сгорали после того, как кулер, охлаждающий радиатор процессора, выходил из строя. Да, тогда это было актуально, но говорить об этом, когда на дворе 2015 год и процессоры AMD оснащены отличной технологией тепловой защиты, – просто кощунство.

Да и тепловой режим зависит от различных факторов, а не только от самого процессора, к примеру, факторами влияния может быть эффективность кулера процессора, а также качество нанесения термопасты. По поводу разгона не буду много говорить и приводить конкретные модели процессоров, а просто констатирую тот факт, что в продаже имеются процессоры из серии «Black Edition», которые ориентированы на разгон самим производителем. Так же и с новыми FX от AMD, они не просто зарекомендовали себя, как пригодные к хорошему оверклоку, но и могут похвастаться мировыми рекордами в разгоне.

RISC

RISC-архитектура (Reduced Instruction Set Computer) относится к процессорам с сокращённым набором команд. В ней быстродействие увеличивается посредством упрощения инструкций: за счёт того, что их декодирование становится проще, уменьшается время исполнения. Изначально RISC-процессоры не обладали инструкциями деления и умножения и не могли работать с числами, имеющими плавающую запятую. Их появление связано с тем, что в CISC достаточно много способов адресации и команд использовались крайне редко.

Система команд в RISC состоит из малого числа часто применяемых команд одного формата, которые можно выполнить за единичный такт центрального процессора. Более сложные и редко применяемые команды выполняются на программном уровне. При этом, благодаря значительному увеличению скорости реализации команд, средняя производительность RISC-процессоров выше, чем у CISC.

Современные RISC-процессоры выполняют порядка сотни команд с закреплённым форматом длиной 4 байта, используя небольшое количество простых способов адресации (индексную, регистровую и другие). Чтобы сократить число обращений к внешней оперативной памяти, в RISC применяются сотни регистров общего назначения (РОН), в то время как в CISC их всего 8-16. В RISC-процессорах обращение к памяти используется только при загрузке данных в РОН либо пересылке результатов в память.

Благодаря сокращению аппаратных средств, используемых для декодирования и реализации сложных команд, достигается значительное упрощение и снижение стоимости интегральных схем. В то же время возрастает производительность и снижается энергопотребление, что особенно актуально для мобильного сегмента. Эти же достоинства служат причиной использования во многих современных CISC-процессорах, например в последних моделях К7 и Pentium, RISC-ядра. Сложные CISC-команды заранее преобразуются в набор простых RISC-операций, которые оперативно выполняются RISC-ядром.

Характерными примерами RISC-архитектур являются:

  • PowerPC;
  • DEC Alpha;
  • ARC;
  • AMD Am29000;
  • серия архитектур ARM;
  • Atmel AVR;
  • Intel i860 и i960;
  • BlackFin;
  • MIPS;
  • PA-RISC;
  • Motorola 88000;
  • SuperH;
  • RISC-V;
  • SPARC.

RISC быстрее CISC, и даже при условии выполнения системой RISC четырёх или пяти команд вместо единственной, выполняемой CISC, RISC выигрывает в скорости, поскольку его команды выполняются в разы оперативнее. Однако CISC продолжает использоваться. Это связано с совместимостью: x86_64 продолжает лидировать в десктоп-сегменте, а поскольку старые программы могут функционировать только на x86, то и новые десктоп-системы должны быть x86(_64), чтобы дать возможность старым программам работать на новых устройствах.

Для Open Source это не проблема, ведь пользователь может найти в сети версию программы, подходящую для другой архитектуры. Однако создать версию проприетарной программы для другой архитектуры получится только у владельца исходного кода.

Название технологии

Существует несколько вариантов названий этой технологии, которые иногда приводят к путанице.

  • x86-64 — первоначальный вариант. Именно под этим названием фирмой AMD была опубликована первая предварительная спецификация.
  • x64 — официальное название версий операционных систем Windows и Solaris, также используемое как название архитектуры фирмами Microsoft и Oracle.
  • AA-64 (AMD Architecture 64) — так архитектуру назвал популярный неофициальный справочник sandpile.org (внеся информацию практически сразу после публикаций первой предварительной спецификации) по аналогии с IA-64.
  • Hammer Architecture — название по первым ядрам процессоров, её поддерживавшим — AMD Clawhammer и AMD Sledgehammer.
  • AMD64 — после выпуска первых Clawhammer и Sledgehammer в названии архитектуры появилось название фирмы-разработчика AMD. Сейчас является официальным для реализации AMD.
  • Yamhill Technology — первое название реализации технологии компанией Intel. Иногда упоминалось название CT (Clackamas Technology).
  • EM64T — первое официальное название реализации Intel. Расшифровывалось как Extended Memory 64 Technology.
  • IA-32e — иногда встречалось совместно с EM64T, чаще для обозначения длинного режима, который в документации Intel называется «режимом IA-32e».
  • Intel 64 — текущее официальное название архитектуры Intel. Постепенно Intel отказывается от наименований IA-32, IA-32e и EM64T в пользу этого названия, которое теперь является единственным официальным для этой архитектуры со стороны компании Intel.

На сегодняшний день наиболее распространёнными являются «x64», «x86-64» и «AMD64». Иногда упоминание AMD вводит пользователей в заблуждение, вплоть до того, что они отказываются использовать дистрибутивы родных версий операционной системы, мотивируя это тем, что на их процессоре Intel версия для AMD не будет работать. На самом деле распространители ПО используют название amd64 лишь потому, что именно AMD была пионером в разработке этой технологии. Часто пользователи путают архитектуру x86-64 с IA-64, ошибочно скачивая ПО для этой архитектуры, и затем обнаруживают, что программа не запускается. Во избежание подобных ошибок следует помнить, что Intel 64 и IA-64 — это совершенно разные, несовместимые между собой микропроцессорные архитектуры. Представители Intel 64 — последние модели Pentium 4, ряд моделей Celeron D, семейство Core 2, Core i3, Core i5, Core i7 и некоторые модели Intel Atom; представители IA-64 — семейства Itanium и Itanium 2.

MISC

MISC-архитектура (Minimal Instruction Set Computer) является процессором с минимальным набором команд. Она отличается ещё большей простотой и используется для ещё большего снижения энергопотребления и итоговой стоимости процессора. MISC-архитектура применяется в IoT-сегменте и компьютерах малой стоимости вроде роутеров. Первой вариацией такого процессора стал MuP21.

В основе MISC-процессоров лежит укладка ряда команд в единое большое слово, что позволяет параллельно обрабатывать несколько потоков данных. MISC применяет стековую модель устройства и базовые слова языка Forth. Процессоры этой архитектуры отличаются малым числом наиболее востребованных команд и использованием длинных командных слов, что позволяет получить выполнение ряда непротиворечивых команд за единый цикл работы процессора. Порядок исполнения команд определяется так, чтобы максимально загрузить маршруты, пропускающие потоки данных.

Все вышеназванные архитектуры могут применять «спекулятивное исполнение команд», то есть исполнение команды заранее, когда ещё неизвестна её необходимость. Это позволяет увеличить производительность.

Как подобрать процессор, какой выбрать AMD или Intel

  • Тактовая частота процессора
  • Размер кэша
  • Частота и тип поддерживаемой оперативной памяти
  • Сокет и в некоторых случаях частота системной шины (FSB)

Кэшем процессора называют оперативную память, встроенную в центральный процессор, которая выступает в качестве буфера между памятью системы (ОЗУ) и процессором. В кэше находятся данные , с которыми центральный процессор ПК работает в настоящий момент, благодаря этому количество его обращений к оперативной памяти значительно уменьшается. Таким образом ,наличие кэша увеличивает производительность процессора ПК.

Кэш в современных процессорах чаще всего разделён на три уровня.

  • Первый уровень кэша (L1) – является самым быстрым, но в тоже время самым маленьким по объему. Ядро процессора работает непосредственно с кэшем первого уровня.
  • Второй уровень кэша (L2) – чуть больше первого по объему, но его скорость передачи данных медленнее первого.
  • Третий уровень кэша (L3) – самый большой по объему, хотя по скорости уступает кэшу второго уровня. Показатель объема кэша второго и третьего уровней важная характеристика.

В современных многоядерных процессорах объемы уровней кэша L1 и L2 делятся на количество ядер. Например, если в описании ПК с 4 ядерным процессором объем кэша второго уровня указан как 1 МБ , это означает 256*4 Кб. Допускается и обратное указание. Кеш третьего уровня L3 – общий для всех ядер процессора.

К примеру ,процессор частота шины которого равна 1333 МГц не сможет работать на материнской плате, которая поддерживает только процессоры с частотой шины 1066 МГц.

Поддержка процессором оперативной памяти (ОЗУ). В современных ПК контроллеры памяти встраиваются не в северный мост чипсета материнской платы, а непосредственно в центральный процессор. Поэтому подбирая оперативную память для современного ПК ,стоит детально изучить список модулей памяти, которые поддерживает процессор ( информация указана в описании каждого процессора) и исходя из полученной информации покупать только те модули которые поддерживает процессор.

С сокетом по аналогии. Материнская плата и подобранный процессор должны иметь аналогичные сокеты.

Преимущества и недостатки процессоров AMD

Основное преимущество ЦП от АМД – это их стоимость в момент выходи и в первые полгода существования той или иной модели. Очень многие покупатели вообще думают, что у Интел и АМД существует определённый монопольный сговор с целью обеспечения прибылей друг друга. Есть множество косвенных факторов, указывающих на это, однако, если просто посмотреть на то, кому эти компании принадлежат, то ни о каком «заговоре» и речи быть не может.

Просто компания АМД имеет не меньший потенциал как для исследования рынка продукции, так и для разработки каких-то новых решений, а области электроники, однако, в отличие от Интел, результаты её экспериментов «выходят в свет» только в случае гарантированного успеха. Как, например, было с Athlon-XP, Athlon-64 или тем же ThreadRipper-ом. Интел же, пользуясь положением лидера может позволить себе продвигать и откровенно провальные идеи (такие, как, например, Slot-1, Celeron-D и прочее), не опасаясь за своё будущее.

Говоря простым языком, АМД проводит как-бы своеобразную «работу над ошибками», которые плодит Интел в своих разработках и маркетинговой политике. Поэтому решения от АМД хоть и могут в чём-то проиграть конкуренту, однако, с уверенностью можно сказать, что явных «ляпов» в своих чипах этот производитель допускает гораздо меньше, нежели его визави.

Однако, любая медаль имеет две стороны. Стремясь походить или даже в чём-то предвосхищать своего оппонента, фирма АМД как бы сама того не хотя, накладывает на себя определённые рамки, выражающиеся часто в ограничении производительности своих изделий (при том, что их цена по-прежнему существенно ниже аналогов от Интела).

Из этого выходит основной недостаток ЦП от АМД – они почти всегда хоть на немного, но медленнее своих прямых конкурентов.

Причина этого действия очень простая и кроется в психологии рынка. Например, пользователь, видя, что его AMD FX хоть и стоит на 30-40% дешевле i3, но проигрывает ему в производительности на 10%. Пользователю хочется большего быстродействия, но i3, он, естественно, покупать не будет, поскольку ему же предлагают Райзен 1700, который дешевле i5, хотя и немного медленнее его. И так далее.

И подобная ситуация наблюдается в любом сегменте рынка. То есть АМД стимулирует переход пользователей на более высокий по производительности и цене уровень вот таким незатейливым способом. Самое же главное, что все оказываются в выигрыше: и пользователь, получивший более современный ПК за меньшие деньги и производитель, получивший возможность продать новый товар.

Резюмируя можно сказать: плюса продукции АМД в её цене (производительность при меньшей стоимости), минусы – в немного уменьшенной производительности равных по уровню решений.

Режимы работы

Процессорные архитектуры поддерживают два режима работы: Long mode («длинный» режим) и Legacy mode («унаследованный», режим совместимости с 32-битным x86).

Long Mode

«Длинный» режим — «родной» для процессоров AMD64. Этот режим даёт возможность воспользоваться всеми дополнительными преимуществами, предоставляемыми архитектурой AMD64. Для использования этого режима необходима 64-битная операционная система, например, Windows Server 2003/2003R2/2008/2008R2/2012, Windows XP Professional x64 Edition, Windows Vista x64, Windows 7/8/8.1/10 x64 или 64-битные варианты UNIX-подобных систем GNU/Linux
, FreeBSD, OpenBSD, NetBSD (чистые 64-битные сборки, однако, есть возможность запуска 32-битных приложений), Solaris (смешанная 32/64 сборка с разными ядрами для 32- и 64-битных процессоров), Mac OS X (смешанная 32/64 сборка с 32-битным ядром, начиная с версии 10.4.7).

Этот режим позволяет выполнять 64-битные программы; также (для обратной совместимости) предоставляется поддержка выполнения 32-битного кода, например, 32-битных приложений, хотя 32-битные программы не смогут использовать 64-битные системные библиотеки, и наоборот. Чтобы справиться с этой проблемой, большинство 64-разрядных операционных систем предоставляют два набора необходимых системных файлов: один — для родных 64-битных приложений, и другой — для 32-битных программ. (Этой же методикой пользовались ранние 32-битные системы — например, Windows 95 — для выполнения 16-битных программ.)

В «длинном» режиме упразднён ряд «рудиментов» архитектуры x86, таких, как режим виртуального 8086, сегментированная модель памяти (однако, осталась возможность использования сегментов FS и GS, что полезно для быстрого нахождения важных данных потока при переключении задач), аппаратная мультизадачность, а также ряд команд, как реализующих упраздненные возможности, так и работающие с BCD-числами, которые в новых программах практически не использовались. Среди особенностей «длинного» режима следует отметить тот факт, что он активируется установкой флага CR0.PG, который используется для включения страничного MMU (при условии что такое переключение разрешено (EFER.LME=1), в противном случае просто произойдет включение MMU в «унаследованном» режиме). Таким образом, невозможно исполнение 64-битного кода с запрещённым страничным преобразованием. Это создаёт определённые трудности в программировании, поскольку при переключении из «длинного» в «унаследованный» режим и обратно (например, для вызова функций BIOS или DOS, монитором виртуальной машины, и т. д.) требуется двойной сброс MMU, для чего код переключения должен находиться в тождественно отображённой странице.

Legacy Mode

Данный «унаследованный» режим позволяет процессору AMD64 выполнять инструкции, рассчитанные для процессоров x86, и предоставляет полную совместимость с 32-битным кодом и операционными системами. В этом режиме процессор ведёт себя точно так же, как x86-процессор, например Athlon или Pentium III, и дополнительные функции, предоставляемые архитектурой AMD64 (например, дополнительные регистры), недоступны. В этом режиме 64-битные программы и операционные системы работать не будут.

Разрядность системы и процессора в Windows 8 или Windows 10

Если вы используете Windows 8 или Windows 10, то для того чтобы узнать поддерживает ли процессор 64 разрядную систему, а также какая система сейчас установлена на вашем компьютере, не нужно никакого дополнительного программного обеспечения. Всю необходимую информацию можно получить через инструменты, встроенные в Windows.

Для этого нужно просто открыть окно «Просмотр сведений о вашем компьютере». Открыть это окно можно по-разному. Например, если на вашем рабочем столе есть иконка компьютера, то вы можете просто кликнуть по ней правой кнопкой мышки и в открывшемся меню выбрать пункт «Свойства». Либо можно открыть «Панель управления» и перейти в раздел «Система и безопасность – Система». Ну и самый простой способ открыть окно «Просмотр сведений о вашем компьютере» это комбинация клавиш Windows-Pause/Break.

После того, как вы откроете окно «Просмотр сведений о вашем компьютере» вам нужно обратить внимание на строку «Тип системы», в ней будет указано разрядность операционной системы и разрядность процессора. Например, если у вас 64 разрядная система и 64 разрядный процессор, то это будет выглядеть так, как на скриншоте внизу

Например, если у вас 64 разрядная система и 64 разрядный процессор, то это будет выглядеть так, как на скриншоте внизу.

Если же у вас установлена 32 разрядная система, но процессор 64 разрядный, то это будет выглядеть так.

Если процессор указывается как 64 разрядный, то это означает, что он поддерживает 64 разрядную системы и при необходимости вы можете ее установить.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Мой редактор ОС
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: