Содержание
В 1834 году Чарльз Бэббидж начал разработку аналитической машины. Одна из важных частей этой машины называлась «Магазин» и предназначалась для хранения промежуточных результатов вычислений. Результаты были сохранены с использованием валов и шестерен.
Компьютеры первого поколения до сих пор можно считать экспериментальными, поэтому в них использовалось много типов запоминающих устройств: на ртутных линиях задержки, электронно-лучевых и электростатических трубках. Магнитный барабан также использовался в качестве оперативной памяти: он обеспечивал скорость, достаточную для компьютеров того времени, и использовался как основная память для хранения программ и входных данных.
Второе поколение требовало более технологичных схем RAM. Самым распространенным типом памяти в то время была память на магнитных сердечниках.
Начиная с третьего поколения большинство компьютерных узлов начали работать на микросхемах, включая оперативную память. Наиболее популярны два типа оперативной памяти: конденсаторная (динамическая память) и триггерная (статическая). Оба этих типа памяти не могут сохранять данные при отключении питания — для этого используется энергонезависимая память.
Оперативная память в структуре персонального компьютера
Итак, оперативная память. Это одна из важнейших комплектующих в компьютере. Нельзя сказать, что одна деталь более важна, а другая менее, но ОЗУ (оперативное запоминающее устройство – именно так официально именуется оперативная память) является незаменимым элементом в работе ПК. Можно сказать, что оперативная память – это своего рода буферная зона, связующий элемент между человеком и компьютером.
Физически оперативная память представлена в виде съёмного модуля, устанавливаемого в специальный разъём на материнской плате, расположенный справа от процессора. На большинстве материнских плат таких разъёмов два или четыре. На этом модуле с одной или двух сторон расположены микросхемы, которые, собственно, и являются памятью.
При включении компьютера запускается операционная система и некоторые программы. Все данные, которые им необходимы для нормального функционирования, помещаются в ОЗУ. Так поступают и все остальные программы, которые пользователь запускает в процессе работы. Будь то работа с текстом, обработка фотографий или прослушивание музыки – все промежуточные результаты работы программ находятся в оперативной памяти.
При выключении питания все данные из ОЗУ исчезают. Потому это устройство и именуется «оперативным». В этом одно из двух его главных отличий от ПЗУ – постоянной памяти типа жёсткого диска или флеш-накопителя. Второе отличие – скорость обмена данными. У ОЗУ она значительно выше, чем у ПЗУ. Этим, собственно, и объясняется назначение оперативной памяти – максимально повысить скорость отклика компьютера на действия пользователя.
На жёстком диске также может храниться некоторая оперативная информация (так называемый файл подкачки), помещаемая туда при недостатке места в ОЗУ. В таком случае пользователем могут наблюдаться негативные явления – подвисание и подтормаживание программ или всей системы.
Какой объём оперативной памяти необходим компьютеру
При выборе или модернизации компьютера часто возникают такие вопросы: «Как узнать оперативную память компьютера?», «Какой объём нужен?». Ответ на первый вопрос достаточно прост – нужно всего лишь воспользоваться утилитой CPU-Z. Она даст исчерпывающей ответ. С объёмом немного сложнее. Если идёт речь о модернизации, то пользователь, скорее всего, уже столкнулся с нехваткой памяти и приблизительно знает, насколько нужно её увеличить.
При сборке нового компьютера в первую очередь определяется его назначение. Для обычной офисной работы с документами вполне хватит и 1-2 Гб. Для домашнего компьютера смешанного использования приемлемо будет 4 Гб. Если собирается игровой компьютер, то понадобится минимум 8 Гб оперативной памяти, но комфортнее будет с 16 Гб. То же самое относится и к серьёзным рабочим машинам. Объём необходимой памяти определяется приложениями, с которыми будет вестись работа, но обычно составляет минимум 8-16 Гб.
Маркировка оперативной памяти
На панели ОЗУ есть наклейка, на которой можно увидеть примерно такие надписи:
8 ГБ 2Rx8 PC3L 12800S
Это имя принадлежит модулю SO-DIMM от производителя Hynix. Первая цифра предоставляет информацию о емкости, которая в данном случае составляет 8 ГБ.
2Rx8 – предоставляет информацию о двух различных типах информации: 1R обозначает модули одного ранга, 2R – модули двойного ранга. Существуют модули 4R (Quad-Rank) и даже те, которые имеют 8 или более модулей, но они относительно редки и часто являются чрезвычайно дорогим серверным оборудованием. Единственное, что стоит за ним, – это размер блоков, к которым осуществляется доступ. Это 64 бита для модулей одного ранга, 256 бит для модулей двойного ранга
Важно, что одновременно возможен только один доступ на блок данных. Модули 1R и модули 2R совместимы друг с другом и могут быть смешаны, но вы должны сначала прочитать информацию производителя о совместимости
Однако это также означает, что двухканальный режим невозможен. Подробнее об этом позже.
X8 – означает, что этот модуль имеет 8 различных банков памяти на каждый чип. Чем больше банков, тем больше емкость отдельных чипов, тем меньше требуется чипов и тем надежнее и экономнее весь модуль.
Следующий блок говорит вам, какой у вас тип. ПК является промышленным стандартом, похожим на нормы ISO или сертификаты IP. Изначально AMD K6 и Pentium было выпущено несколько версий стандарта, более поздние из них – PC3 (DDR3) и PC4 (DDR4). Добавление L означает низкое энергопотребление, то есть микросхемы, которые работают при более низком напряжении и, таким образом, могут экономить еще больше электроэнергии (обычно 1,5 В, для микросхем малой мощности требуется всего 1,35 В)
Важно, чтобы маломощные модули не могли сочетаться с обычными, даже если материнская плата сама по себе поддерживает оба стандарта в соответствии с инструкциями производителя
Последний блок говорит о максимально возможной скорости полосы RAM. В нашем случае это 12800 МБ / с, то есть 12,8 ГБ / с. S сзади обозначает SO-DIMM это меньший дизайн. При покупке убедитесь, что вы получите правильный тип.
История оперативной памяти (ОЗУ)
Что бы до конца понять что такое оперативная память окунемся немного в историю. Поскольку существовали первые предшественники современных компьютеров, идея создания оперативной памяти уже существовала. Нужно было придумать хранилище для данных и промежуточных результатов, к которым можно получить чрезвычайно быстрый доступ.
Нынешняя форма оперативной памяти для ПК существует уже 20 лет с 1999 года. Примечательно, что дизайн, и техническая сторона почти не изменились с тех пор: число выводов в наши дни несколько выше, емкость и скорость увеличились во много раз – но форма стержня сохранилась до сегодняшнего дня. Если в 1999 году 184 пина были нормой, то сегодня их 288.
Первоначальный отец современной рабочей памяти чрезвычайно прост: кольцо из намагничиваемого (железного) сердечника заключает в себе строку для записи и чтения. На основе ориентации магнитного поля можно сохранить два разных состояния, то есть 0 и 1.
Ориентация может быть изменена с помощью электрического напряжения на линии записи. Если вы хотите узнать больше о тороидальном хранилище и подобных концепциях, я рекомендую поискать информацию в Google.
Как работает RAM
ОЗУ состоит из крошечных конденсаторов и транзисторов, способных удерживать электрический заряд, представляющий биты данных, аналогично процессорам и другим частям вашего компьютера. Этот электрический заряд необходимо постоянно обновлять. В противном случае конденсаторы очень быстро разряжаются, и данные исчезают из ОЗУ.
Тот факт, что данные могут быть потеряны так быстро после того, как разряжен заряд, является причиной того, почему так важно сохранять на жёстком диске или твердотельном накопителе любые изменённые данные. Вот почему так много программ имеют функции автосохранения или кешируют несохраненные изменения в случае неожиданного завершения работы
Эксперты-криминалисты могут извлекать данные из оперативной памяти при особых обстоятельствах. Однако в большинстве случаев после завершения работы с файлом или выключения компьютера информация из ОЗУ исчезает.
Из чего состоит оперативная память?
Теперь вернемся к нашей памяти, она представляет собой большую группу регистров, которые хранят данные. Существует SRAM (статическая память) и DRAM (динамическая память). В статической памяти регистры представлены в виде триггеров, а в динамический в виде конденсаторов, которые со временем могут терять заряд. Сегодня в ОЗУ используется именно DRAM, где каждая ячейка — это транзистор и конденсатор, который при отсутствии питания теряет все данные. Именно поэтому, когда мы отключаем компьютер, оперативная память очищается. Все драйвера и другие важные программы компьютер в выключенном состоянии хранит на SSD, а уже при включении он заносит необходимые данные в оперативную память.
Ячейка динамической оперативной памяти, как уже было сказано выше, состоит из конденсатора и транзистора, хранит она 1 бит информации. Точнее, саму информацию хранит конденсатор, а за переключения состояния отвечает транзистор. Конденсатор мы можем представить в виде небольшого ведерка, который наполняется электронами при подаче тока. Подробнее работу динамической оперативной памяти мы рассмотрели еще 7 лет назад. С тех пор мало что изменилось в принципах её работы. Если конденсатор заполнен электронами, его состояние равно единице, то есть на выходе имеем 1 бит информации. Если же нет, то нулю.
Функции ОЗУ
Информация, которую содержит временная память, как можно догадаться, не сохраняется постоянно и после выключения питания компьютера бесследно исчезает, если, разумеется, пользователь не успел сохранить ее в постоянной, то есть, на жестком диске или каком-либо сменном носителе. Однако временная память имеет одно большое преимущество перед постоянной – это высокое быстродействие. В частности, оперативная память работает в несколько сот тысяч (!) раз быстрее, чем жесткий диск. Именно поэтому во временной памяти хранятся динамично меняющиеся данные и программы, которые запускаются в течение сессии работы операционной системы.
Оперативная память (которую также иногда называют ОЗУ, что означает «оперативное запоминающее устройство») является самым большим временным хранилищем данных в компьютере. По сравнению с кэш-памятью ОЗУ обладает гораздо большим объемом, но в то же время, и меньшим быстродействием. Однако быстродействие ОЗУ, тем не менее, вполне достаточно для выполнения текущих задач прикладных программ и операционной системы.
В настоящее время микросхемы ОЗУ изготавливаются на основе технологии динамической памяти (DRAM, или Dynamic Random Access Memory). Динамическая память, в отличие от статической, которая используется в кэш-памяти, имеет более простое устройство, и, соответственно ее цена на единицу объема гораздо ниже. Для хранения одной единицы информации (одного бита) в DRAM используется всего лишь один транзистор и один конденсатор.
Помимо этого, особенностью динамической памяти является ее постоянная потребность в периодической регенерации содержимого. Эта особенность обусловлена тем, что конденсаторы, обслуживающие ячейку памяти, очень быстро разряжаются, и поэтому через определенное время их содержимое необходимо прочитать и записать заново. Данная операция в современных микросхемах осуществляется автоматически через определенный промежуток времени, при помощи контроллера микросхемы памяти.
Максимальный объем доступной оперативной памяти, которую можно установить в системе, определяется разрядностью шины адреса процессора. С появлением 32-разрядных процессоров этот объем был равен 4 ГБ. Современные 64-разрядные процессоры способны поддерживать адресное пространство ОЗУ в 16 ТБ. Это цифра представляется сейчас совершенно фантастической, но ведь когда-то и цифра в 4 ГБ для ОЗУ казалась абсолютно невероятной, а сегодня 32-разрядные системы уже уперлись в этот потолок, ограничивающий их возможности.
Как и в случае процессора, скорость работы ОЗУ во многом определяется ее тактовой частотой. Тактовая частота современных микросхем памяти типа DDR3 в среднем составляет примерно 1600 МГц.
Физически оперативная память представляет собой длинную и невысокую плату, к которой припаяны непосредственно микросхемы памяти. Эта плата вставляется в специальные слоты на материнской плате. В настоящее время наиболее распространены модули памяти форм-фактора DIMM (Dual In-line Memory Module или двухсторонний модуль памяти).
Твердотельный накопитель
Твердотельный накопитель (англ. SSD, Solid State Drive, Solid State Disk) — энергонезависимое, перезаписываемое компьютерное запоминающее устройство без движущихся механических частей. Следует различать твердотельные накопители, основанные на использовании энергозависимой (RAM SSD) и энергонезависимой (NAND или Flash SSD) памяти.
Накопители RAM SSD, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость. Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели — системами резервного и/или оперативного копирования.
Накопители NAND SSD, построенные на использовании энергонезависимой памяти появились относительно недавно, но в связи с гораздо более низкой стоимостью начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям в чтении и записи, но компенсировали это (особенно при чтении) высокой скоростью поиска информации (сопоставимой со скоростью оперативной памяти). Сейчас уже выпускаются твердотельные накопители Flash со скоростью чтения и записи, сопоставимой с традиционными, и разработаны модели, существенно их превосходящие. Характеризуются относительно небольшими размерами и низким энергопотреблением. Уже практически полностью завоевали рынок ускорителей баз данных среднего уровня и начинают теснить традиционные диски в мобильных приложениях.
Преимущества по сравнению с жёсткими дисками
·меньше время загрузки системы;
·отсутствие движущихся частей;
·производительность: скорость чтения и записи до 270 МБ/с;
·низкая потребляемая мощность;
·полное отсутствие шума от движущихся частей и охлаждающих вентиляторов;
·высокая механическая стойкость;
·широкий диапазон рабочих температур;
·практически устойчивое время считывания файлов вне зависимости от их расположения или фрагментации;
·малый размер и вес.
Зачем нужна оперативная память?
Как мы уже знаем, обмен данными между процессором и памятью происходит чаще всего с участием кэш-памяти. В свою очередь, ею управляет специальный контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их, т.е. кэш-контроллер загружает в кэш-память нужные данные из оперативной памяти, и возвращает, когда нужно, модифицированные процессором данные в оперативку.
После процессора, оперативную память можно считать самым быстродействующим устройством. Поэтому основной обмен данными и происходит между этими двумя девайсами. Вся информация в персональном компьютере хранится на жестком диске. При включении компа в ОЗУ с винта записываются драйверы, специальные программы и элементы операционной системы. Затем туда записываются те программы – приложения, которые мы будем запускать, при закрытии последних они будут стерты из оной.
Данные, записанные в оперативной памяти, передаются в CPU (он же не раз упомянутый процессор, он же Central Processing Unit), там обрабатываются и записываются обратно. И так постоянно: дали команду процессору взять биты по таким-то адресам (как то: обработатьих и вернуть на место или записать на новое) – он так и сделал (смотрите изображение).
Как работает процессор?
Нельзя говорить о памяти, не сказав пару слов о процессоре. Процессор и оперативной память довольно похожи, так как в обоих случаях используются логические устройства, которые могут принимать лишь два состояния. Однако процессор выполняет задачи, связанные с вычислениями. Для этого у него имеется устройство управления — именно на него поступают наши инструкции, арифметико-логическое устройство — оно отвечает за все арифметические операции (сложение, вычитание и так далее) и регистры.
Так как инструкции, поступающие на процессор, работают с данными из памяти, эти данные нужно где-то хранить. Брать их постоянно из оперативной памяти — слишком долго, поэтому в процессоре имеется своя память, представленная в виде нескольких регистров — она является самой быстрой памятью в компьютере.
Что такое регистр? Регистр в процессоре представлен в виде триггера, который может хранить 1 бит информации. Триггер — это один из множества логических элементов в микрочипах. Благодаря своей логике он способен хранить информацию. Вот так выглядит D-триггер:
Это D-триггер и он способен хранить информацию. Каждое простейшее логическое устройство, включая D-триггер, состоит из логических операций. На фото выше можно заметить знак «&» — это логическое И
Таблица истинности для логического «И»
Верхний переключатель «D» в D-триггере меняет значение бита, а нижний «C» включает или отключает его хранение. Вам наверняка интересно, как устроен этот «D-триггер». Подробнее работу триггеров вы можете изучить по видеоролику ниже:
Помимо D-триггера, существуют также RS-триггер, JK-триггер и другие. Этой теме посвящена не одна книга, можете изучить логические устройства микрочипов самостоятельно. Было бы неплохо углубиться еще и в тему квантовых процессоров, потому что очевидно, что будущее именно за ними.
Очистка оперативной памяти
Самый простой и действенный способ очистки оперативной памяти – это перезагрузка компьютера. Но он подходит далеко не всем пользователям и не во всех случаях полезен. Альтернативой будет закрыть ненужные программы и тем самым высвободить зарезервированные ими объёмы памяти. Сделать это можно в «Диспетчере задач», вызвав его сочетанием клавиш Ctrl+Alt+Delete.
Существует также много различных программ, призванных оптимизировать расход оперативной памяти. Можно отметить такие утилиты, как CleanMem, SuperRam, Wise Memory Optimizer. А также CCleaner – универсальную и очень полезную утилиту мониторинга системы, которая способна эффективно очистить память, удалив временные файлы и кэш программ и системы, оптимизировав реестр.
Но стоит помнить, что эти способы лишь временное решение проблемы, полагаться на них не стоит. Главной проблемой нехватки оперативной памяти и, как следствие, медленной работы компьютера является недостаточный объём ОЗУ для конкретной комплектации компьютера или поставленной задачи. Решить её можно, установив дополнительную планку памяти или купив новую большего объёма.
DDR3
Подобно предшественнику, выпускаются в виде 240-контактной планки, однако несовместимы из-за разных разъемов (далее расскажу об этом более подробно).
Тип памяти отличается еще большей частотой и меньшим энергопотреблением, а также увеличением предподкачки с 4 до 8 бит. Существует модификация DDR3L со сниженным до 1,35 В рабочим напряжением. Кстати, о частоте. Есть несколько модификаций: 1066, 1333, 1600, 1866, 2133 или 2400 с соответствующей скоростью передачи данных.Выпускается с 2012 года. Компьютеры, использующий этот тип памяти, работают до сих пор. Объем установленных модулей от 1 до 16 Гб. В формфакторе SO-DIMM «потолок» — 8 Гб.
Что такое оперативная память?
Оперативная память («Память с произвольным доступом»), называется рабочей памятью, является кратковременной памятью для компьютера. Если вы запускаете Windows или программу, все данные, которые нужны процессору для расчетов, сохраняются в оперативной памяти. Компьютер также «запоминает» числа округления или промежуточные результаты в рабочей памяти и может вызвать их снова в любое время. ОЗУ можно назвать своего рода посредником между процессором и запущенным приложением. Если вам нужна хорошая производительность советуем купить компьютер с достаточным объемом оперативной памяти.
Что такое оперативная память?
У некоторых пользователей существует недопонимание разницы между пространством на жестком диске и оперативной памятью. Устройство постоянного хранения (HDD) обычно включает сотни, а иногда и тысячи гигабайт свободного места. В то время как средняя ОЗУ ПК редко занимает 10 ГБ. На практике это работает следующим образом: HDD содержит информацию, которую сохраняет пользователь, это могут быть картинки, видео или установленные программы. ОЗУ – это память, которая временно хранит информацию и делает это автоматически без вмешательства пользователя. Когда компьютер выключен жесткий диск сохраняет все данные, в отличие от оперативной памяти, которая очищает информацию.
На материнской плате компьютера или ноутбука оперативная память выглядит как небольшая полоска, содержащая чипы. Для ее установки в системный блок не требуются технические навыки и дальнейшая настройка операционной системы.
Виды оперативной памяти
На данный момент времени, существует два типа памяти возможных к применению в качестве оперативной памяти в компьютере. Оба представляют собой память на основе полупроводников с произвольным доступом. Другими словами, память позволяющая получить доступ к любому своему элементу (ячейке) по её адресу.
Память статического типа
SRAM (Static random access memory) — изготавливается на основе полупроводниковых триггеров и имеет очень высокую скорость работы. Основных недостатков два: высокая стоимость и занимает много места. Сейчас используется в основном для кэша небольшой емкости в микропроцессорах или в специализированных устройствах, где данные недостатки не критичны. Поэтому в дальнейшем мы её рассматривать не будем.
Память динамического типа
DRAM (Dynamic random access memory) — память наиболее широко используемая в качестве оперативной в компьютерах. Построена на основе конденсаторов, имеет высокую плотность записи и относительно низкую стоимость. Недостатки вытекают из особенностей её конструкции, а именно, применение конденсаторов небольшой емкости приводит к быстрому саморазряду последних, поэтому их заряд приходится периодически пополнять. Этот процесс называют регенерацией памяти, отсюда возникло и название динамическая память. Регенерация заметно тормозит скорость ее работы, поэтому применяют различные интеллектуальные схемы стремящиеся уменьшить временные задержки.
Развитие технологий идет быстрыми темпами и совершенствование памяти не исключение. Компьютерная оперативная память, применяемая в настоящее время, берет свое начало с разработки памяти DDR SDRAM. В ней была удвоена скорость работы по сравнению с предыдущими разработками за счет выполнения двух операций за один такт (по фронту и по срезу сигнала), отсюда и название DDR (Double Data Rate). Поэтому эффективная частота передачи данных равна удвоенной тактовой частоте. Сейчас ее можно встретить практически только в старом оборудовании, зато на её основе была создана DDR2 SDRAM.
В DDR2 SDRAM была вдвое увеличена частота работы шины, но задержки несколько выросли. За счет применения нового корпуса и 240 контактов на модуль, она обратно не совместима с DDR SDRAM и имеет эффективную частоту от 400 до 1200 МГц.
Сейчас наиболее распространённой памятью является третье поколение DDR3 SDRAM. За счет технологических решений и снижения питающего напряжения удалось снизить энергопотребление и поднять эффективную частоту, составляющую от 800 до 2400 МГц. Несмотря на тот же корпус и 240 контактов, модули памяти DDR2 и DDR3 электрически не совместимы между собой. Для защиты от случайной установки ключ (выемка в плате) находится в другом месте.
DDR4 является перспективной разработкой, которая в ближайшее время придет на смену DDR3 и будет иметь пониженное энергопотребление и более высокие частоты, до 4266 МГц.
Наряду с частотой работы, большое влияние на итоговую скорость работы оказывают тайминги. Таймингами называются временные задержки между командой и её выполнением. Они необходимы, чтобы память могла «подготовиться» к её выполнению, в противном случае часть данных может быть искажена. Соответственно, чем меньше тайминги (латентность памяти) тем лучше и следовательно быстрее работает память при прочих равных.
Различных таймингов существует много, но обычно выделяют четыре основных:
- CL (CAS Latency) — задержка между командой на чтение и началом поступления данных
- TRCD (Row Address to Column Address Delay) — задержка между подачей команды на активацию строки и командой на чтение или запись данных
- TRP (Row Precharge Time) — задержка между командой закрытия строки и открытием следующей
- TRAS (Row Active Time) — время между активацией строки и её закрытием
Указываются обычно в виде строки цифр разделенных дефисом, например 2-2-3-6, если указывается только одна цифра, то подразумевается параметр CAS Latency. Это позволяет сравнить скорость работы различных модулей и объясняет разницу в стоимости казалось бы одинаковых планок.
Кстати, обычно чем больше объем модуля, тем больше тайминги, поэтому взять две планки по 2 Гб может оказаться выгоднее, чем одну на 4 Гб. К тому же использование нескольких одинаковых планок памяти активирует многоканальный режим работы, что обеспечивает дополнительное увеличение быстродействия. Справедливости ради нужно отметить, что в настоящее время влияние таймингов на производительность несколько снизилось из-за повсеместного увеличения объема кэша на основе высокоскоростной памяти статического типа интегрированного в современные процессоры.
7.1. Как устроена память
Память компьютера построена из двоичных запоминающих элементов —
битов, объединенных в группы по 8 битов, которые называются байтами.
(Единицы измерения памяти совпадают с единицами измерения информации). Все байты
пронумерованы. Номер байта называется его адресом.
Байты могут объединяться в ячейки, которые называются также словами.
Для каждого компьютера характерна определенная длина слова — два, четыре или
восемь байтов. Это не исключает использования ячеек памяти другой длины
(например, полуслово, двойное слово). Как правило, в одном машинном слове может
быть представлено либо одно целое число, либо одна команда. Однако, допускаются
переменные форматы представления информации. Разбиение памяти на слова для
четырехбайтовых компьютеров представлено в таблице:
Байт 0 | Байт 1 | Байт 2 | Байт 3 | Байт 4 | Байт 5 | Байт 6 | Байт 7 |
ПОЛУСЛОВО | ПОЛУСЛОВО | ПОЛУСЛОВО | ПОЛУСЛОВО | ||||
СЛОВО | СЛОВО | ||||||
ДВОЙНОЕ СЛОВО |
Широко используются и более крупные производные
единицы объема памяти: Килобайт, Мегабайт, Гигабайт, а также, в
последнее время, Терабайт и Петабайт.
Современные компьютеры имеют много разнообразных запоминающих устройств,
которые сильно отличаются между собой по назначению, временным характеристикам,
объёму хранимой информации и стоимости хранения одинакового объёма информации.
Различают два основных вида памяти — внутреннюю и
внешнюю.
Как работает оперативная память и зачем она нужна
ОЗУ (оперативное запоминающее устройство), оно же RAM («Random Access Memory» — память с произвольным доступом), представляет собой область временного хранения данных, при помощи которой обеспечивается функционирование программного обеспечения. Физически, оперативная память в системе представляет собой набор микросхем или модулей (содержащих микросхемы), которые обычно подключаются к системной плате.
В процессе работы память выступает в качестве временного буфера (в ней хранятся данные и запущенные программы) между дисковыми накопителями и процессором благодаря значительно большей скорости чтения и записи данных.
По своей структуре память напоминает пчелиные соты, т.е. состоит из ячеек, каждая из которых предназначена для хранения мёда определенного объема данных, как правило, одного или четырех бит. Каждая ячейка оной имеет свой уникальный «домашний» адрес, который делится на два компонента – адрес горизонтальной строки (Row) и вертикального столбца (Column).
Ячейки представляют собой конденсаторы, способные накапливать электрический заряд. С помощью специальных усилителей аналоговые сигналы переводятся в цифровые, которые в свою очередь образуют данные.
Для передачи на микросхему памяти адреса строки служит некий сигнал, который зовется RAS (Row Address Strobe), а для адреса столбца — сигнал CAS (Column Address Strobe).